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SUMMARY: Recent evidence indicates that fluoride produces neuronal destruction
and synaptic injury by a mechanism that involves free radical production and lipid
peroxidation. For a number of pathological disorders of the central nervous system
(CNS), excitotoxicity plays a critical role. Various studies have shown that many of
the neurotoxic metals, such as mercury, lead, aluminum, and iron also injure neural
elements in the CNS by an excitotoxic mechanism. Free radical generation and lipid
peroxidation, especially in the face of hypomagnesemia and low neuronal energy
production, also magnify excitotoxic sensitivity of neurons and their elements. This
paper reviews briefly some of the studies that point to a common mechanism for the
CNS neurotoxic effects of fluoride and calls for research directed toward further
elucidation of this mechanism.
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Glutamate; 4-Hydroxynonenal; Melatonin; Neurodegeneration; Peroxynitrite; Reactive nitrogen 
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INTRODUCTION

Compelling evidence indicates that fluoride produces injury to the central ner-
vous system (CNS) by several mechanisms. Of particular interest is the ability of
fluoride to induce free radical generation and lipid peroxidation in the brain,
especially in the hippocampus. In addition, fluoride enhances aluminum absorp-
tion from the gastrointestinal mucosa and across the blood-brain barrier. Of par-
ticular concern is the recent demonstration that fluoride readily forms a chemical
complex with aluminum, similar to the phosphate ion, which is toxic to neurons
at low concentrations and can act as an activator of G-proteins, a membrane link
to second messenger activation. 

While it appears that the toxicity of fluoride is secondary to many widely diver-
gent and unrelated processes, there is compelling evidence that a central mecha-
nism may be involved called excitotoxicity (Figure and Table).
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Figure. Possible mechanisms for neurodegenerative effects of fluoride and aluminum as 
related to excitotoxicity. The broken arrow represents the effects of both elements. 

In a recent series of papers, I argue that excitotoxicity is also the central mecha-
nism of autism and the Gulf War Syndrome.2-4

The process involves accumulation of acidic amino acids in the synaptic cleft 

Figure. Possible mechanisms for neurodegenerative effects of fluoride and aluminum as 
related to excitotoxicity. The broken arrow represents the effects of both elements. 

WHAT IS EXCITOTOXICITY?

Excitotoxicity is a common mechanism seen in many neurological disorders,
including strokes, brain trauma, CNS infections, autoimmune disorders, multiple
sclerosis, heavy metal toxicity, brain tumors, and the majority of neurodegenera-
tive diseases, such as Alzheimer’s dementia, Parkinson’s disease, and Lou Geh-
rig’s disease (amyotrophic lateral sclerosis, ALS).1 In a recent series of papers, I
argue that excitotoxicity is also the central mechanism of autism and the Gulf
War Syndrome.2-4
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The process involves accumulation of acidic amino acids in the synaptic cleft
for a prolonged period. These special amino acids include cysteine, cysteine
sulfinic acid, cysteic acid, and homocysteine, as well as the neurotransmitters
glutamate and aspartate. The neurotransmitters glutamate and aspartate normally
activate a series of glutamate receptors on the postsynaptic membrane that leads
to neuronal excitation. In fact, glutamate is the most abundant neurotransmitter in
the CNS and is responsible for attention, alertness, and learning. It is also the
most neurotoxic.

If the excitatory amino acids are not removed quickly from the synaptic cleft,
the postsynaptic neurons become overstimulated, leading to either synaptic
destruction and dendritic retraction or, should the stimulation be prolonged and
intense, neuronal destruction by both apoptosis and necrosis.5 It is for these rea-
sons that extracellular glutamate levels are carefully regulated by a series of
glutamate transporters, which remove the glutamate for storage, either in the pre-
synaptic neuron terminal or surrounding astrocytes (glia).6

Table. Comparison of the effects of fluoride/aluminium and excitotoxicity

Fluoride/Aluminium Excitotoxicity

Increased brain reactive oxygen species (ROS) 
and reactive nitrogen species (RNS)

yes yes

Increased lipid peroxidation (LPO) yes yes

Decreased glutathione yes yes

Decreased superoxide dismutase (SOD) yes yes

Elevated brain ascorbate yes yes

Hippocampal apoptosis necrosis yes yes

G-protein activation yes yes

Synaptic injury yes yes

Impaired glutamate uptake yes yes

Microglial activation ? for fluoride
yes for aluminium

yes

ROS in other tissues ? for fluoride
yes for aluminium

yes

DNA injury yes yes
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This excitotoxic process was originally discovered by two ophthalmologists,
Lucas and Newhouse in 19577 and given the name excitotoxicity by Dr John
Olney in 1969.8 Since its discovery, a great deal has been learned about the mech-
anism of excitotoxicity, the receptors involved, and the glutamate uptake system.
In addition, much has been discovered about other toxins that can activate this
destructive process. Recently, glutamate receptors have been found in numerous
peripheral tissues, including the testes, lungs, pancreatic islet cells, cardiac
nerves, ovaries, endothelial cells, immune cells, and bone osteoblasts.9

COMMON MECHANISMS 

1.Free radical generation 

Glutamate receptors are found in numerous types of neurons, including those
that utilize other neurotransmitters, such as GABA (gamma-aminobutyric acid),
dopamine, norepinephrine, and serotonin.10 There are two basic types of
glutamate receptors, ion-gated channels (ionotrophic) and metabotropic recep-
tors.11 Three ionotrophic receptor types have been identified, based on their
affinity for selective agonists. These include N-methyl-D-aspartate (NMDA),
alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), and kain-
ate receptors. Neurons frequently contain more than one of these receptors types
on the synaptic membranes. 

The ionotrophic receptors control the passage of sodium, potassium, and cal-
cium through membrane channels, which in turn initiates neuronal depolarization
(excitation). Most important to the excitotoxic process is calcium accumulation
within the cytosol following glutamate receptor activation. Intracellular calcium
triggers numerous cellular reactions including the activation of nitric oxide syn-
thase and protein kinase C.12 These in turn can activate free radical generation
and lipid peroxidation as well as eicosanoid activation, should glutamate persist
too long in its receptor.13 These processes play a major role in excitotoxic injury
and neuronal death. 

Three types of metabotropic receptors and eight subtypes of these receptors
have been identified through cloning techniques. They operate mainly by GTP
(guanine triphosphate) binding proteins or G-proteins. 14 When these receptors
are stimulated by glutamate, the G-protein within the cell membrane is activated,
which in turn activates several second messengers within the neuron, including
IP3 (inositol 1,4,5-trisphosphate), cAMP (cyclic adenine monophosphate), or
cGMP (cyclic guanine monophosphate). There is also evidence that they regulate
intracellular calcium.16 Two of the metabotropic receptors are thought to be neu-
roprotective and one is capable of triggering excitotoxicity. 

Free radicals and lipid peroxidation products generated by excitotoxicity have
been shown to damage dendrites and synaptic connections, and, if unrelieved,
lead to neuronal destruction.16 Likewise, free radicals caused by other processes
have been shown to trigger excitotoxicity by impairing glutamate removal and by
activating microglia, which contain abundant stores of glutamate.17
Fluoride 2004;37(4)
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It has also been shown that one of the lipid peroxidation products, 4-hydrox-
ynonenal (4-HNE), specifically impairs synaptic function and inhibits glutamate
removal by the glutamate transport proteins.18 This lipid peroxidation product,
though less abundant than malondialdehyde, is significantly more neurotoxic.
Any process that precipitates lipid peroxidation also precipitates the production
of 4-HNE. Therefore, even if fluoride does not directly trigger excitotoxicity, it
will do so indirectly by impairing glutamate removal and by generating reactive
oxygen intermediates and lipid peroxidation products. 

A study from China found that sodium fluoride significantly increased nitric
oxide synthase (NOS) activity.19 Interestingly, excitotoxins also stimulated NOS
activity, which increases intracellular nitric oxide (NO) content. This is of partic-
ular importance because NO combines readily with superoxide forming the very
powerfully toxic peroxynitrite radical, which plays a major role in all neurode-
generative diseases, primarily by damaging mitochondrial energy production,
inhibiting glutamate re-uptake, and stimulating lipid peroxidation.20- 21 Fluoride
has also been shown to inhibit superoxide dismutase, which would increase intra-
cellular levels of the superoxide radical, the substrate for peroxynitrite forma-
tion.22

Another related neurotoxin, aluminum, is known to produce a dramatic increase
in brain free radical generation and lipid peroxidation both directly and by
increasing neuronal and glial iron levels.23 In addition, melanin has a high affin-
ity for aluminum, making neuromelanin-containing neurons in the substantia
nigra pars compacta significantly more vulnerable to free radical and lipid per-
oxidation injury.24 Aluminum accumulation and focal increases in reactive oxy-
gen species and lipid peroxidation in this nucleus have been demonstrated in
Parkinson’s disease.25

Another mechanism by which fluoride might increase brain free radical genera-
tion and lipid peroxidation would be through activation of protein kinase C by a
fluoroaluminum complex. It is known that a major mechanism by which
glutamate induces excitotoxicity is activation of protein kinase C. Blocking this
enzyme affords significant protection against excitotoxicity. Lead dramatically
increases protein kinase C activity in a manner similar to glutamate, thereby trig-
gering excitotoxicity.26 Fluoride, in the form of silicofluorides in drinking water
has been found to increase blood lead levels significantly, indicating an indirect
connection between fluoride, free radical generation, and excitotoxicity.27

Because of the intimate connection between excitotoxicity, free radical genera-
tion, and lipid peroxidation, one can safely assume that fluoride can at least ini-
tiate the process indirectly and because of chronic exposure seen with water
fluoridation, one would expect an eventual increase in neurodegeneration-associ-
ate disorders such as Alzheimer’s dementia, ALS, and Parkinson’s disease. 

2. Inhibition of antioxidant enzymes

Closely connected with excitotoxicity-precipitated free radical generation and
lipid peroxidation is the eventual depletion of antioxidant defenses. Several stud-
Fluoride 2004;37(4)
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ies have demonstrated that fluoride toxicity, as well as excitotoxic injury, is asso-
ciated with selective antioxidant depletion.28-30

Fluoride has been shown to inhibit certain antioxidant enzymes and molecules,
such as superoxide dismutase (SOD), glutathione reductase, glutathione peroxi-
dase, catalase, and glutathione.31 This would not only increase free radical injury
but would also enhance excitotoxicity, since reactive oxygen species as well as
nitrogen species and lipid peroxidation products can trigger the excitotoxic pro-
cess.32 Antioxidant enzyme inhibition would necessarily enhance the toxicity of
other neurotoxic elements, pesticides, herbicides, and environmental pollutants. 

Another mechanism for magnifying the harmful effects of both fluoride and
excitotoxins on the brain would be inhibition of melatonin. Melatonin, a hormone
produced by the pineal gland, has been shown to have powerful neutralizing
effects on free radicals and lipid peroxidation and to increase the levels of several
of the antioxidant enzymes in the brain including SOD, glutathione reductase,
glutathione peroxidase, catalase, and glutathione itself.33

A recent study has shown that fluoride significantly inhibits the release of
melatonin from the pineal gland and that fluoride accumulates in the gland in
very large concentrations in individuals drinking fluoridated water.34 Ironically,
glutamate and aspartate also powerfully inhibit melatonin release from the pineal
gland and do so by a metabotropic receptor.35 Conceivably, fluoride inhibits
release of pineal melatonin by elevating glutamate levels. Since no research has
been reported looking for this connection we do not know. 

A recent study revealed that babies with the lowest melatonin production had
the most neurobehavioral problems.36 Melatonin levels are also lower in the cere-
brospinal fluid (CSF) of Alzheimer’s patients as compared with normal individu-
als.37 The fact that fluoride lowers melatonin production would indicate that risk
of neurodegeneration in both instances would be elevated.38

3. Inhibition of mitochondrial energy enzymes

Another connection between glutamate excitotoxicity and fluoride toxicity is
related to inhibition of brain energy production. Several studies have shown that
anything which suppresses neuronal energy production, especially mitochondrial
energy production, greatly enhances excitotoxic sensitivity.39-41 In fact, when
neuronal energy production is low, even physiological levels of excitotoxins such
as glutamate can trigger excitotoxicity. 

Fluoride is also known to inhibit cellular energy producing enzymes, including
mitochondrial electron transport enzymes. It does this both directly, as in the case
of glycolytic and Kreb’s cycle enzymes,42 and indirectly, as in the case of the
mitochondrial enzymes by the effect of peroxynitrite.43 Vani and Reddy demon-
strated suppression of both antioxidant enzymes and energy generating enzymes
in female mice treated with 20 mg of fluoride/kg bw for 14 days.22

The importance of neuronal energy suppression by fluoride lies in the fact that
that mitochondrial energy suppression is intimately connected as an early event
to neurodegenerative diseases such as Alzheimer’s dementia and Parkinson’s dis-
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ease.44-46 Since fluoride can inhibit these enzymes, even in low concentrations,
there is an increased likelihood that excitotoxicity plays a significant role in this
process. Likewise, it should be appreciated that Mullenix et al have shown that
fluoride accumulates in various brain areas of the rat, particularly the hippocam-
pus, resulting in higher fluoride levels in the brain than are seen in the blood.47

The hippocampus is one of the most sensitive areas of the brain to a multitude of
neurotoxic events. 

4. Inhibition of glutamate transporters

One of the most important ways glutamate concentrations are controlled in the
nervous system is by a series of glutamate transport proteins. Thus far, five such
transporters have been demonstrated by cloning techniques.48 Of particular
importance are GLAST (cloned glutamate/aspartate transporter) and GLT-1
(glutamate transporter-1). These transporters are associated with either the glial
cells or the neurons themselves. The glial transporters (GLAST and GLT-1) bind
to synaptically released glutamate and transport it to the interior of the glial cells.
The neuronal transporters bind the glutamate and transfer it to the interior of the
presynaptic terminal. 

Considerable evidence points to impairment of these transporters as major play-
ers in neurodevelopmental disorders and neurodegenerative diseases.49 The func-
tion of these transporters is altered by a number of commonly encountered toxins
including mercury,50 aluminum,51 iron,52 cytokines,53 eicosanoids (PGE2),54

and 4-HNE.55 In fact, mercury has been shown to inhibit the glutamate transport-
ers at concentrations below those that are cytotoxic.56 Anything that increases
free radical generation and lipid peroxidation impairs glutamate transport. 

Aluminum inhibition of glutamate transporters is of special interest because of
the frequent and ready interaction of aluminum and fluoride to form a biologi-
cally reactive complex. Although no one has apparently examined the occurrence
of fluoride-aluminum complexes as the common inhibitor involved, the possibil-
ity is quite high. This is because of the chemical avidity of fluoride for aluminum
and the fact they frequently occur together in nature. 

Even without the direct involvement of a fluoroaluminum complex, the fact
that fluoride is known to cause a seven-fold increase the absorption of aluminum
past gut barriers is of significant concern.57 In addition, fluoride enhances the
passage across the blood-brain barrier. In several studies, fluoride added to drink-
ing water doubled brain aluminum levels, thus increasing the likelihood of
glutamate transporter inhibition.58,59 

Aluminum glutamate, which is formed in the GI tract, has been shown to alter
the blood-brain barrier making it more permeable to normally excluded toxins.60

In addition, it enhanced both aluminum and glutamate concentrations in the
brain, significantly increasing the risk of excitotoxicity.
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THE ALUMINUM-FLUORIDE CONNECTION

As mentioned in the introduction, aluminum interacts with fluoride to form a
fluoroaluminum complex that mimics phosphate groups in biological systems.61

By this mechanism, it could also activate the G-proteins in cell membranes. As
we have seen, the metabotropic receptors are activated by a G-protein mecha-
nism. In addition, numerous cells in the body utilize the G-protein second mes-
senger receptor system, including endothelial cells, lymphocytes, osteoblasts,
other neurotransmitters (dopamine, norepinephrine, acetylcholine, serotonin,
neuropeptides, and opioids), and glucagon. 

Activation of metabotropic excitatory receptors by an aluminum-fluoride com-
plex could initiate excitotoxicity as shown by Lan and coworkers.62 Because the
aluminum-fluoride complex accumulates in the brain, it would also be expected
to cause prolonged neurotoxicity, leading eventually to neurodegeneration and
synaptic loss. 

The aluminum-fluoride complex has been shown to produce neuronal loss in
the CA1 and CA-4 areas of the hippocampus when given to animals as 0.5 ppm
in drinking water.59   The toxic effect may be related to a combination of effects,
including impairment of energy-producing enzymes, impaired dephosphorylation
of hyperphosphorylated tau-protein, increased neuronal iron concentration, ele-
vated free radical and lipid peroxidation levels, and impaired DNA repair, all of
which are related to excitotoxicity.

Another toxic effect of aluminum, and possibly a fluoroaluminum complex, is
the activation of microglia. These are resident immune cells within the nervous
system, which are normally quiescent, but are easily activated by a number of
environmental and biological agents, such as viruses, mycoplasma, bacteria, alu-
minum, mercury, and several pesticides.63 

Once activated, microglia generate and secrete a number of neurotoxic com-
pounds, including two powerful excitotoxins: glutamate and quinolinic acid.64

The combination of excitotoxin secretion and cytokine production greatly
increases the concentration of free radicals and lipid peroxidation products in the
brain. No one has looked at the possibility of fluoride-induced microglial activa-
tion. Yet, one would expect the fluoroaluminum complex to activate microglia,
since aluminum alone is a powerful activator.65

Chronic microglial activation has been associated with a number of neurode-
generative processes, including strokes, multiple sclerosis, brain trauma, experi-
mental allergic encephalomyelitis (EAE), Alzheimer’s dementia, Parkinson’s
disease, and ALS.3 Because both aluminum and fluoride accumulate in the brain
and have their highest concentrations in the hippocampus and neocortex, one
would expect chronic microglial activation as well. At least one study noted reac-
tive gliosis (microglial activation) in association with fluoride brain toxicity.66 
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FLUORIDE: A SPECIAL DANGER TO THE DEVELOPING BRAIN

The brain undergoes one of the fastest growth and development rates of any
portion of the human body during embryogenesis. This occurs especially during
the last trimester and first two years of life, a period called the brain growth spurt.
This involves not only the rapid development of synaptic connections (synapto-
genesis) and pathway development, but also refinement of all of the synaptic con-
nection made during this period. One way glutamate does this is by stimulating
the growth cones that guide neural pathways to their intended destination. The
brain develops far greater synaptic connections than are needed during this “brain
growth spurt” and as a result, synaptic connections are removed in a process
referred to as pruning.

Connected to this pruning process, as well as to synaptogenesis and pathway
development, is the level of glutamate within the brain. The rise and fall of brain
glutamate levels during development controls these processes, and is finely tuned
throughout brain development.67 Too much glutamate overprunes the synapses
and dendrites, whereas too little results in an excess of un-needed connections.68

Both can result in severe neurodevelopmental problems. 
Recent studies have revealed that the glutamate transport proteins also play a

significant role in the development of the brain.69,70 As shown by these studies,
anything that alters transporter function can affect brain development. By inter-
fering with neuronal energy production, neurotransmitter levels (especially
glutamate), free radical generation and growth cone function, fluoride can have
significant harmful effects on neurodevelopment. 

In addition, fluoride has also been found to inhibit thyroid function and thereby
alter early neuron migration in the developing fetus.71 This can result in irrevers-
ible changes in the fetal brain. 

A CALL FOR FURTHER RESEARCH

It is obvious from this short review that more research needs to be done in this
area. We need data on both the effects of fluoride and fluoroaluminum on the
glutamate transporter proteins and on the exact mechanism of free radical genera-
tion being caused by fluoride. In addition, we need studies to see if fluoride can
cause chronic microglial activation and neurodegeneration. 

Because of the growing number of studies showing a strong connection
between aluminum accumulation in the brain and neurodegenerative diseases,
studies need to be done to see if the aluminum in neurofibrillary tangles and
senile plaques is in fact fluoroaluminum. Further studies are also needed to see if
fluoroaluminum passes along olfactory axons into the entorhinal area as has been
demonstrated for aluminum itself.72 This would not only provide direct access to
the area of the brain showing the earliest changes of Alzheimer’s dementia, but
would allow lower concentrations in the drinking water to produce higher con-
centrations in the hippocampal area than would be attainable from blood. 
Fluoride 2004;37(4)
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In addition, special studies are needed using silicofluorides to see if their toxic-
ity to the nervous system differs from that of sodium fluoride. Along this same
line, we need data on the possibility of additive and even synergic toxicities when
fluoride is combined with mercury, lead, cadmium, and other known neurotoxins. 

Although progress has been made on nutrient-based neuroprotection against
fluoride toxicity, more research needs to be pursued.73-77 Chinoy and Sharma
found that both vitamin E and D3 reversed the toxic effect of fluoride on male
reproductive organs and that a combination of the two antioxidants completely
reversed the toxicity.78 In a recent study, Chinoy and Shah found that a combina-
tion of vitamin C and E and calcium could reverse the toxic effects of both fluo-
ride and arsenic on multiple biochemical parameters, including suppression of
dehydroascorbic acid, glutathione, glutathione peroxidase, and SOD in the brains
of mice.79 If excitotoxicity indeed plays a significant role in fluoride toxicity, we
need to apply some of the methods used to protect against excitotoxicity, such as
increasing the intake of methylcobalamin, melatonin, selenium, the B vitamins,
vitamins C, E, D, and K, along with metabolic stimulants such as pyruvate,
malate, CoQ10, acetyl-L-carnitine, R-lipoic acid, and ginkgo biloba. Of special
importance is supplementation with magnesium, which has been shown to block
the NMDA glutamate receptor and decrease free radical production. 

One area of particular interest is the use of flavonoids as neuroprotectants. Plant
flavonoids are known to be the most versatile and powerful antioxidants known,
and one of the few antioxidants that will neutralize peroxynitrite.80 In addition,
they can chelate metals, reduce inflammation, block eicosanoid production, and
inhibit enzymes such as protein kinase C, which is critical to excitotoxicity and
lead neurotoxicity.81 A recent study by Juzyszyn and co-workers found that quer-
cetin sulfonate, a water-soluble form of the flavonoid quercetin, protected liver
and kidney cells from ammonium fluoride suppression of mitochondrial energy
production.82 

Finally, we need more data on the concentration and accumulation of fluoride
in other calcified areas of the brain beside the pineal gland. For example, calcifi-
cation of the basal ganglion is seen in a small number of individuals. In the past,
this was considered an asymptomatic condition occurring in 0.3% of the popula-
tion examined.83 While basal ganglion calcification has been noted in a number
of disorders, of particular interest is its appearance in Down’s syndrome. One
study on autopsied Down’s brains found calcification in 45% in the area of the
basal ganglion and increased calcification there with increasing age.84 Newer
studies have shown that a significant number of these individuals have symptoms
related to basal ganglion dysfunction as well as neuropsychiatric disturbances.85

In addition, recent studies has shown that excitotoxicity induces calcification
deposits in the brain, which also contain aluminosilicates.86 Should these calcifi-
cations accumulate fluoride in high concentrations as found in pineal calcifica-
tions, one would expect damage to adjacent neurons and glia. With widespread
fluoridation of drinking water, one would also expect higher fluoride concentra-
tions in these calcified structures than in the past.
Fluoride 2004;37(4)
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It is obvious from this review that there is an intimate connection between the
neurotoxicity of fluoride, aluminum, and glutamate that needs further attention. It
is also obvious that excitotoxicity plays some role in this process, perhaps a cen-
tral one. 
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